Birth may not be a major microbe delivery event for babies
Babies are born germy, and that’s a good thing. Our microbiomes — the microbes that live on and in us — are gaining cred as tiny but powerful keepers of our health.
As microbes gain scientific stature, some scientists are trying to answer questions about how and when those germs first show up on babies. Birth itself may be an important microbe-delivery event, some researchers suspect. A trip through the birth canal can coat a baby with bacteria from his mother. A C-section, some evidence suggests, might introduce different bacteria, at least right after birth.
That difference forms the basis of the practice of vaginal seeding, which involves wiping vaginal fluids onto a baby born by C-section to introduce microbes the baby would have encountered in a vaginal birth.
Even while some parents are asking for the procedure, there’s dissent in the ranks of research about its benefits. Scientists don’t agree yet on how — or even whether — type of birth affects the microbiome. “It’s murky,” says obstetrician and maternal-fetal medicine specialist Kjersti Aagaard of the Baylor College of Medicine in Houston. Existing studies don’t clearly distinguish the effects of the C-section itself from those of certain diseases or conditions that can make a C-section more likely, such as maternal diabetes or obesity, she says. Other issues, like whether a baby received antibiotics or is breastfed, also muddy the waters. “You are left saying, ‘Wait a minute. Is it the surgery or not the surgery? What’s going on here?’” Aagaard says.
In a search for clarity, Aagaard and her colleagues surveyed the microbiomes of 81 pregnant women. Later on, the researchers added a second group of 82 women, whose microbiomes were assessed at the birth of their children.
Just after birth, babies who had been delivered by C-section had different mouth, nose and skin microbiomes than babies born vaginally. One possible explanation is that these babies are handled differently just after birth, Aagaard says. The microbiomes of the babies’ meconium, or stool, appeared to be similar, regardless of how the babies were born.
But between four and six weeks later, these C-section/vaginal birth differences on the mouth, nose and skin were largely gone, Aagaard says. The microbes living in and on the babies born by C-section and those born vaginally were nearly indistinguishable, the researchers reported online January 23 in Nature Medicine.
Depending on where they lived, the populations of microbes had already taken on distinct identities by about a month after birth, the researchers found. Communities of nose-dwelling microbes were easy to distinguish from those living in the gut, for instance. These regional differences are signs of surprising microbial maturity, Aagaard says. “Postnatal microbiomes start looking like adults a little sooner than we may have appreciated,” she says.
The results raise an interesting question: If the type of birth isn’t one of the main shapers of microbiomes, then how and when do microbes get into babies? It’s possible that microbes from mothers slip into fetuses during pregnancy — a plausible idea, given some earlier results. Genetically tagged bacteria fed to pregnant mice showed up in their fetuses’ guts a day before the predicted due date, a result that suggests the bacteria traveled from mother to fetus. And Aagaard and colleagues have found evidence of microbes in the placenta of human mothers. They are now studying whether microbes, or perhaps pieces of them, move through the placenta from mother to baby. If that turns out to be the case, then babies meet their microbes, for better or worse, well before their birthday.